A Bound on the Approximation Order of Surface Splines
نویسنده
چکیده
The functions m := j j 2m d if d is odd, and m := j j 2m d log j j if d is even, are known as surface splines, and are commonly used in the interpolation or approximation of smooth functions. We show that if one's domain is the unit ball in R, then the approximation order of the translates of m is at most m. This is in contrast to the case when the domain is all of R where it is known that the approximation order is exactly 2m.
منابع مشابه
Constrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملProducing Gravity Acceleration at Sea Surface in Persian Gulf Using Ellipsoidal Splines
In this paper, a method is proposed for producing gravity acceleration at sea surface in the Persian Gulf. This method is based on the Geoid height from satellite altimetry, high resolution Geopotential models, and ellipsoidal splines. First, the definition of the ellipsoidal spline functions is presented in a Hilbert space, which is consisted of infinitely often differentiable functions. In or...
متن کاملApplication of Fuzzy Bicubic Splines Interpolation for Solving Two-Dimensional Linear Fuzzy Fredholm Integral Equations
In this paper, firstly, we review approximation of fuzzy functions by fuzzy bicubic splines interpolation and present a new approach based on the two-dimensional fuzzy splines interpolation and iterative method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equation (2DLFFIE). Also, we prove convergence analysis and numerical stability analysis ...
متن کاملAdaptive Smooth Scattered Data Approximation for Large-scale Terrain Visualization
We present a fast method that adaptively approximates large-scale functional scattered data sets with hierarchical B-splines. The scheme is memory efficient, easy to implement and produces smooth surfaces. It combines adaptive clustering based on quadtrees with piecewise polynomial least squares approximations. The resulting surface components are locally approximated by a smooth B-spline surfa...
متن کاملB-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems
In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998